Duke University School of Medicine Doctor of Physical Therapy

Background

- What is **Central Post-Stroke Pain (CPSP)**?
- a neuropathic pain disorder resulting from an ischemic or hemorrhagic stroke that causes allodynia (pain to normally nonpainful stimuli) and dysesthesia (abnormal sensation)
- Brain stimulation is a nonpharmacological treatment for patients with CPSP
- Types of relevant **non-invasive brain stimulation** (Figure 1)
- repetitive transcranial magnetic stimulation (rTMS)
- transcranial direct current stimulation (tDCS)

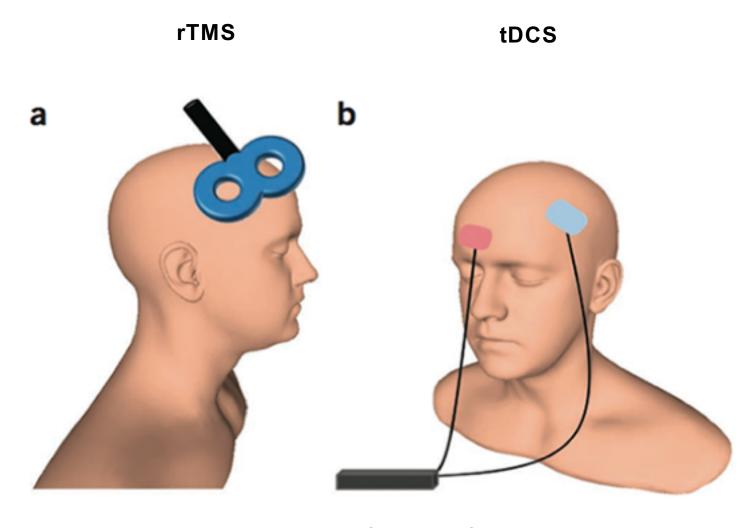
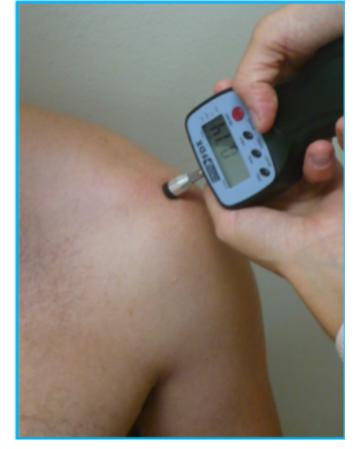


Figure 1: Examples of types of stimulation.

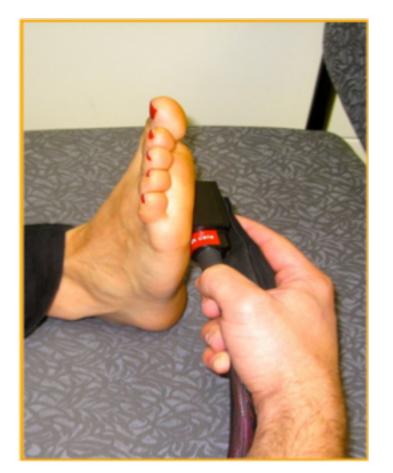

Purpose

- To analyze the efficacy and quality of non-invasive brain stimulation intervention studies for CPSP in the chronic stroke population (> 6 months post stroke).

Methods

- Databases searched: PubMed, Embase, and Web of Science
- Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was applied
- Quality was assessed using the Modified Downs and Black checklist
- Inclusion Criteria
- Patients (18-85 years) post stroke with CPSP
- Randomized controlled trials and observational studies (cohort, case-control, and cross-sectional studies) published in English journals between 2007-2017
- Non-invasive brain stimulation (tDCS or rTMS)

Pain Pressure Threshold



Cold and Warm Pain Threshold

Figure 2: Examples of Quantitative Sensory Testing (QST).

Effects of Non-Invasive Brain Stimulation on Pain in Individuals with Central Post-Stroke Pain: A Systematic Review Benjamin Ramger, SPT; Kimberly Bader, SPT; Samantha Davies, SPT; David Stewart, SPT; Leila Ledbetter, MILS;

Intervention Specifications and Outcomes

Author, year	Type of Stimulation	Stimulation Location	Intensity	Current flow	Frequency	Length	Control Group
Bae, S et al. 2014	tDCS	Primary motor cortex	2 mA	20 minutes	3x/week	3 weeks	Sham tDCS
De Oliveira, R et al. 2014	rTMS	Primary Motor Cortex/ Dorsolateral Prefrontal Cortex	120% RMT	10 Hz - 25 x 5 sec	1x/day	10 days	Sham rTMS
Hasan, M et al. 2014	rTMS	M1 predetermined 'hotspot'	80-90% RMT	10 Hz - 20 x 10 sec	1 session/ 3-5 days	5 sessions	None
Kobayashi, M et al. 2015	rTMS	Primary motor cortex	90% RMT	5 Hz - 10 x 10 sec	1x/week	12 weeks	Sham rTMS
Matsumura, Y et al. 2013	rTMS	Primary motor cortex	100% RMT of unaffected side	5 Hz - 10 x 50 pulses	1 session	1 day	Sham rTMS
Ohn, S et al. 2012	rTMS	Motor 'hotspot' of first dorsal interossei of affected hand	90 % RMT	10 Hz - 50 x 5 sec	1/day	5 days	None

Table 1. Data of interventions from included studies. RMT = Resting Motor Threshold

Author, year	Measurement Time Points	VAS Differences (P<.05)	QST Differences (P<.05)	
Bae, S et al. 2014	Baseline, immediate post	No	No	
	Baseline, 1 week post	No	Yes	
	Baseline, 3 weeks post	Yes	Yes	
De Oliveira, R et al. 2014	Baseline, Day 10 post	No	Not recorded in study	
Hasan, M et al. 2014	Baseline, immediate post	Yes	Yes	
Kobayashi, M et al. 2015	Baseline, immediate post	Yes	Not recorded in study	
	Baseline, weekly for 12 weeks	Yes	Not recorded in study	
Matsumura, Y et al. 2013	Baseline, multiple time points post (0, 60, 120, 180, 240, 300 min, and 24 hours)	Yes (significant time course effect up to 300 min)	Not recorded in study	
Ohn, S et al. 2012	Baseline, immediately post	Yes	Not recorded in study	

Table 2. Interventions results from included studies. VAS = Visual Analog Scale; QST = Quantitative Sensory Test

Corey Simon, DPT, PhD; Jody Feld, DPT, NCS

Results

Search Results - 1107 articles found in initial search; 6 articles eligible for inclusion **Study Parameters** (Table 1) Five studies utilized rTMS; one used tDCS Five studies stimulated over primary motor cortex, while one

- stimulated over pre-motor cortex and dorsolateral prefrontal cortex

Outcome Measures

- Clinical pain: five studies utilized VAS
- Experimental pain: two studied utilized QST (Figure 2)

Brain Stimulation Effects (Table 2)

- Five studies found a decrease in clinical pain intensity (p<.05) from primary motor cortex
- One study tested rTMS to the left premotor/dorsolateral prefrontal cortex and failed to find a treatment effect for clinical pain (p>.05)
- For experimental pain, one study found thermal pain thresholds improved for those receiving tDCS compared to sham (p<.05); while another study found normalization of the cold detection threshold only after rTMS (p<.05)

Quality Assessment (Table 3)

Only one study found to be of 'excellent/good' quality, while the other five were rated as either 'fair' or 'poor'

	Bae, S et al. 2014	De Oliveira, R et al. 2014	Hasan, M et al. 2014	Kobayashi, M et al. 2014 - Study 1	Kobayashi, M et al. 2014 - Study 2	Matsumura, Y et al. 2013	Ohn, S et al. 2012
Reporting	7	10	6	8	8	7	8
External Validity	0	0	0	0	0	0	0
Internal Validity Bias	5	7	4	5	5	3	4
Internal Validity Confounding	1	4	0	3	3	0	2
Power	0	1	0	0	0	0	1
Total	13	22	10	16	16	10	15
Table 3. Quality assessment, Modified Downs and Black Checklist				Key Poor (<14) Fa	ir (14-18) Excellent/	/Good (19-28)	

Conclusions

Non-invasive brain stimulation may have a therapeutic effect on pain levels, as evidenced by decreased VAS and QST scores Poor quality of the studies reviewed, and significant variation in parameters of stimulation and participant characteristics raises caution for drawing conclusions Future studies in this area should focus on standardizing treatment parameters, improving the homogeneity of the populations studied, and understanding if non-invasive brain stimulation is a sustainable long-term treatment for patients with CPSP

Clinical Relevance

rTMS and tDCS may be effective non-invasive treatment options to reduce pain in persons with CPSP, and may provide a window of time for decreased pain and optimization of therapy treatments

Clinicians should consider quality of evidence and length of effects

immediately after, to 3 weeks after, rTMS or tDCS delivered over the