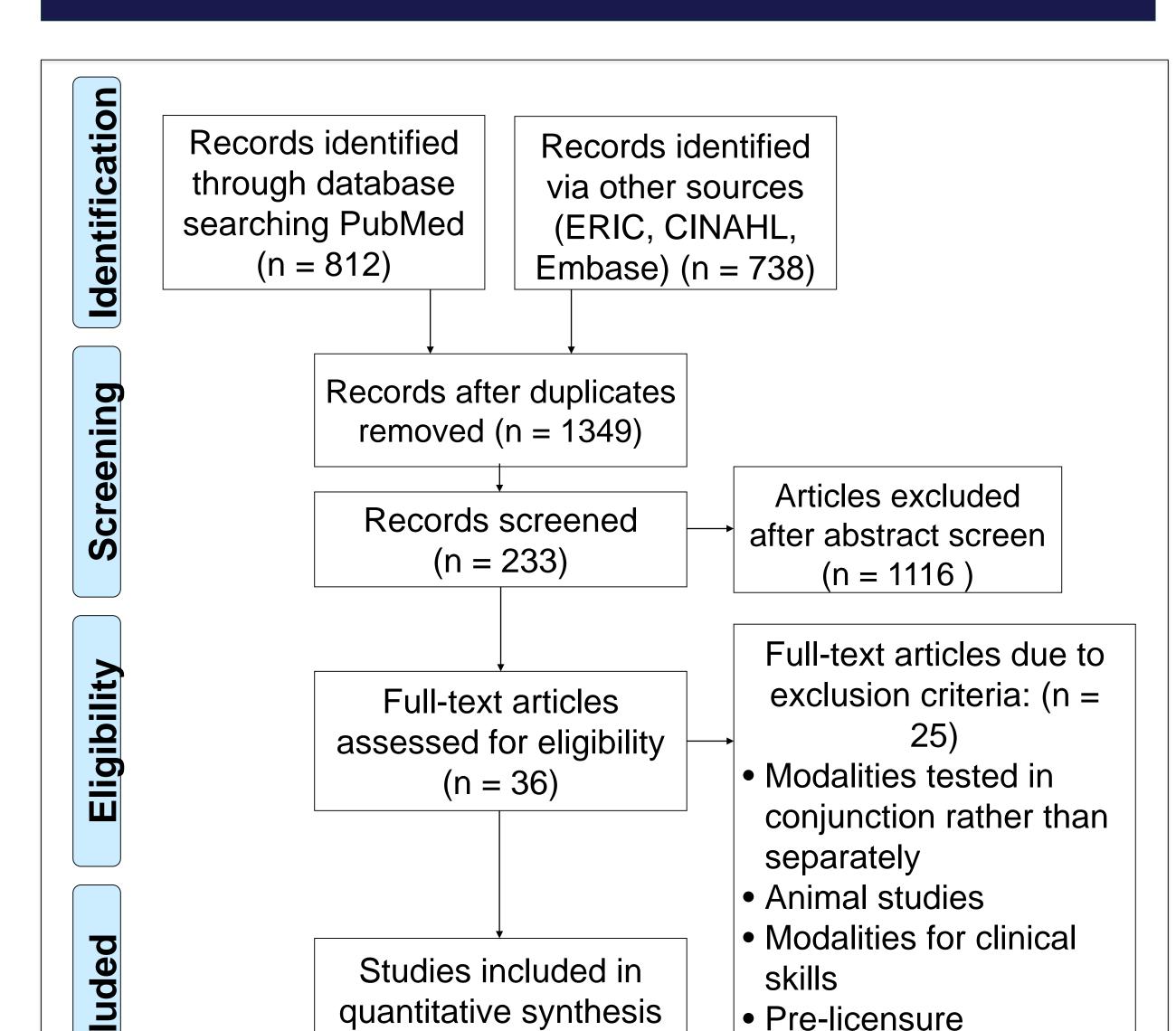
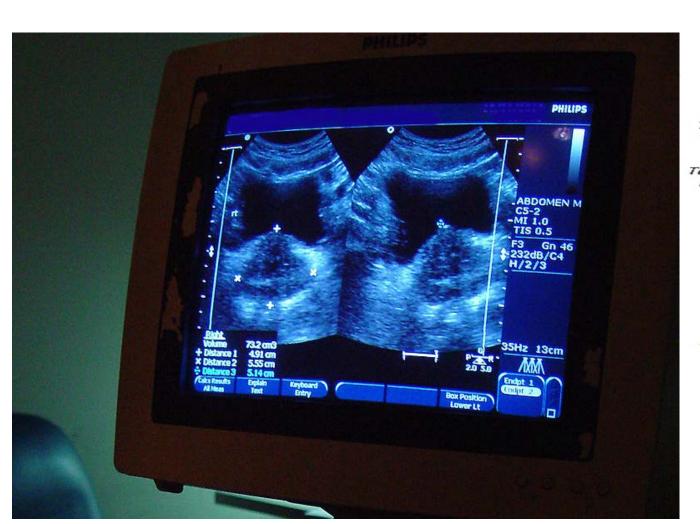
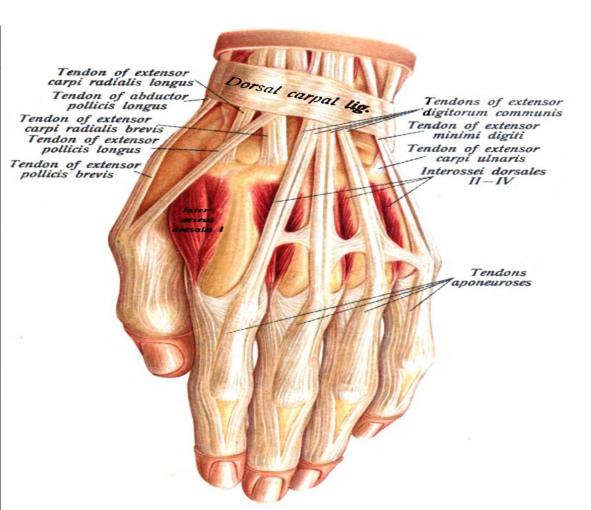


Doctor of Physical Therapy


Background

Health graduate programs are experiencing increased pressure to lower cost and save time. This has lead to examination if cadaveric dissection is the most effective approach for anatomy instruction.^{2,5}


Purpose


To review available literature and grade evidence of student learning outcomes when taught through cadaveric dissection versus other educational strategies.

Methods

(n = 8)

professional education

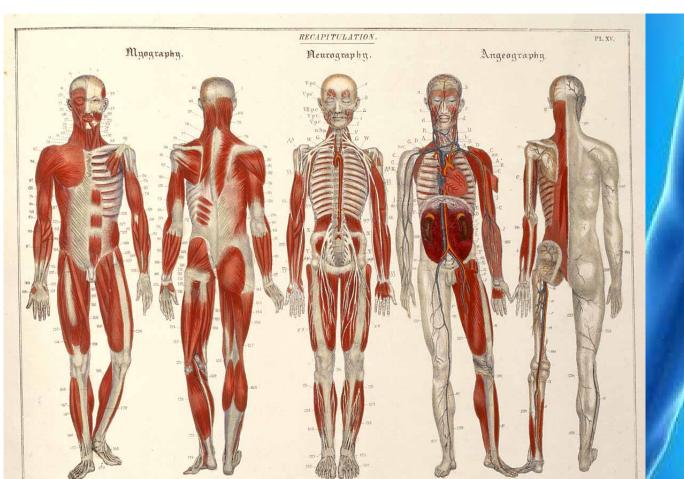
Editorials, letters, or

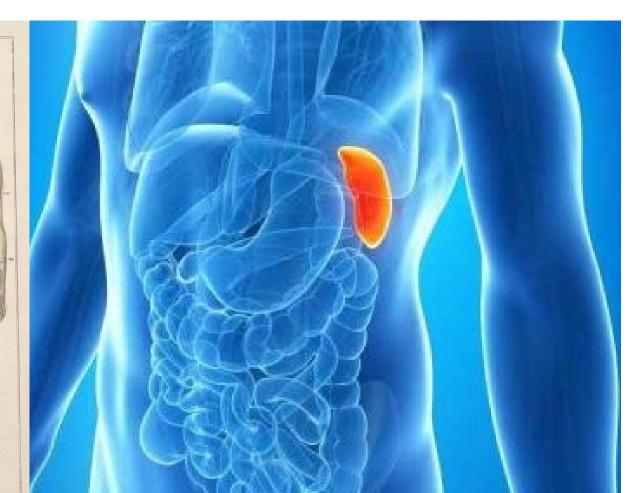
Unavailable in English

Full Text Unavailable

case-reports

Teaching Strategies
Left: Untrasound⁷ Right: Prosection⁸


A Systematic Review of the Effectiveness of Different Learning Strategies within Gross Anatomy Courses: Cadaveric Dissection Versus Alternatives


Samantha Wood, MEd, BS, SPT; Diana Campbell, BS, SPT; Leah Cronley, BS, SPT; Amy Arnette, BS, SPT; Carson Wigley, BS, SPT; Deborah Engle, EdD, MS; Kyle Covington, PT, DPT, PhD

Results

Article	Populati on	Interventi on	Comparator	Outcomes	Study Type	BEME and Kirkpatrick Scores
Anderson et al., 2000	PT students	Cadaver dissection	Computer aids	No significant difference	Cohort	BEME: 4 Kirkpatrick: 2
Biasutto et al., 2006	Medical students	Cadaver dissection	Computer aids	Significant difference	Cohort	BEME: 3 Kirkpatrick: 2
Bukowski et al., 2002	PT students	Cadaver dissection	Computer aids	No significant difference	Cohort	BEME: 3 Kirkpatrick: 2
Erkonen et al., 1992	MD students	Cadaver dissection	Videos	No significant difference		BEME: 4 Kirkpatrick: 2
Nnodim et al., 1996	MD students	Cadaver dissection	Prosection	No significant difference	Matched cohort	BEME: 4 Kirkpatrick: 2
Plack et al., 2000	PT students	Cadaver dissection	Computer aids and prosection	No significant difference		BEME: 4 Kirkpatrick: 2
Stanford et al., 1994	MD students	Cadaver dissection	Computer aids	No significant difference		BEME: 4 Kirkpatrick: 2
Yeager et al., 1996	MD students	Cadaver dissection	34 Students studied predissected material	No significant difference		BEME: 3 Kirkpatrick: 2

Scores of Quality and Effectiveness of Studies ^{3,4}						
Score	Definition	# of Studies				
BEME Scores: Quality of evidence						
1	No clear conclusions	0				
2	Results Ambiguous	0				
3	Conclusions can probably be	3				
	based on results					
4	Results are clear	5				
5	Results are unequivocal	0				
Kirkpatrick's Scores: Effectiveness of intervention						
0	None	0				
1	Reaction	0				
2	Learning	9				
3	Behavior	0				
4	Result	0				

Teaching Strategies
Left: Dissection⁹ Right: Computer Aids¹⁰

Educational Relevance

- Cadaveric dissection has long been considered the goldstandard for anatomy education in health professional curricula.¹
- The results of this systematic review suggest that research does not back traditional thought.
- With further research and implementation of other anatomy teaching strategies, curriculum may change.

Conclusions

- 7/8 studies concluded that there was no statistically significant difference in student scores when two different modalities were used to teach anatomy.
- 8/8 studies scored a 2 on the Kirkpatrick scale indicating that learning was achieved through the teaching intervention.
- 3/8 studies scored a 3 on the BEME indicating that conclusions can probably be based on results, and 5/8 studies scored a 4 indicating that results are clear.
- Future studies may choose to explore how the strategy used affects not only test scores, but also students' ability to perform as practitioners.

Acknowledgements / References

We would like to thank Leila Ledbetter, MLIS, and Jamie Conklin, MLIS, for their assistance in developing the search strategy.

- Ghosh SK. Human cadaveric dissection: a historical account from ancient Greece to the modern era. *Anatomy & cell biology.* 2015;48(3):153-169.
- 2. Guttmann GDD, Richard L; Trelease, Robert B. To what extent is cadaver dissection necessary to learn medical gross anatomy? A debate forum. *The Anatomical record*. 2004:2-3.
- . Hammick M, Dornan T, Steinert Y. Conducting a best evidence systematic review. Part 1: From idea to data coding. BEME guide no. 13. Med Teach. 2010;32:3–15.
- 4. Kirkpatrick DL. Evaluation of training. In: Craig RL, ed. Training and Development Handbook: A Guide to Human Resource Development. 2nd ed. New York, NY: McGraw-Hill; 1976.
- 5. McLachlan JC, Patten D. Anatomy teaching: ghosts of the past, present and future. *Medical education*. 2006;40(3):243-253.
- 6. PLoS Medicine (OPEN ACCESS) Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097
- 7. https://en.wikipedia.org/wiki/Medical_ultrasound#/media/File:UltrasoundBPH.jpg
- 8. https://en.wikipedia.org/wiki/iviedical_uitrasound#/media/File:OitrasoundBPH.jpg
- 9. https://upload.wikimedia.org/wikipedia/commons/4/4c/II-C-07.jpg
- 10. http://donde-esta.org/bazo/