Is Concurrent LR-5 Associated with a Higher Rate of HCC in LR-3 or 4 Observations? An Individual Participant Data Meta-Analysis

Duke Radiology

Duke University School of Medicine

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer (~90%) and the third leading cause of cancer-related deaths worldwide.

MRI

The Liver Imaging Reporting and Data System (LI-RADS) is used to diagnosed HCC and categorizes liver observations from LR-1 (definitely benign) to LR-5 (definitely HCC). LR-3 indicates intermediate probability of HCC with a PPV of 38%, and LR-4 indicates probable HCC with a PPV of 74%.

Treating LR-5 observations can be straightforward, however, the management of intermediate LR-3 and LR-4 category observations is complicated by diagnostic uncertainty.

Currently, LI-RADS does not incorporate factors extrinsic to an individual liver observation, such as the presence of a concurrent LR-5 observation elsewhere in the liver. The ability to improve risk stratification for LR-3 and -4 observations as more or less likely to be HCC could help guide surveillance, diagnostic steps, and clinical management.

To evaluate whether the presence of a concurrent LR-5 observation is associated with a difference in the probability that LR-3 or LR-4 observations represent HCC through an individual participant data (IPD) meta-analysis.

Abedrabbo, N.¹, Lerner, E.², Kadi, D.³, Lam, E.⁴, van der Pol, C.⁵, Costa, A.⁶, McInnes, M.D.F.⁷, Bashir, M.B.⁸

¹Duke University School of Medicine; ²Juravinski Hospital and Cancer Center, McMaster University, ³Faculty of Health Sciences, Queen's University, ⁴Ottawa Hospital Research Institute, ⁵Faculty of Medicine, University of Ottawa, ⁶Departments of Radiology and Epidemiology, University of Ottawa, ⁷Department of Radiology, Duke University Medical Center

METHODS

We conducted a meta-analysis using a previously described individual participant database. The database is composed of observations from over 20 sites globally. Observations were categorized by CT/MRI for HCC using LI-RADS v2014/2017/2018.

We used a generalized linear mixed model to pool and model the IPD across studies simultaneously, to estimate positive predictive value of LR-3 and LR-4 observations without and with concurrent LR-5 for the diagnosis of HCC.

The risk of bias was assessed using a composite reference standard and Quality Assessment of Diagnostic Accuracy Studies 2.

RESULTS

Table 1. Concurrent and non-concurrent LR-3 observations.					
	Concurrent LR-5	No concurrent LR-5			
Observations	587	1373			
Patients	405	604			
*Female	74	138			
*Male	312	438			
Mean Age +/- SD	59.3 +/- 9.9	59.0 +/- 10.9			
Number of HCC	196	417			
% HCC	33.4%	30.4%			
	55.4 /0	30.4 /0			

female and male participants does not add up to total participant counts because one included study did not report participant sex.

Table 2: PPV of LR-3 with and without concurrent LR-5

	Concurrent LR-5	
PPV (95% CI)	45.4% (22.3% - 70.7%)	
Tau^2	7.0	
	Between group p value: 0.63 (two-s	ided z-test)

Table 3. LR-4 Observations with concurrent and non-concurrent LR-5 observations.

	Concurrent LR-5	No concurrent LR-5
Observations	264	367
Patients	191	256
*Female	30	48
*Male	143	190
Mean Age +/- SD	59.3 +/- 10.7	58.2 +/- 10.2
Number of HCC	212	243
% HCC	80.3%	66.2%

*Number of female and male participants does not add up to total participant counts because one included study did not report participant Sex.

Table 4: PPV of LR-4 with and without concurrent LR-5

	Concurrent LR-5
PPV (95% CI)	88.6% (71.1% - 96.1%)
Tau^2	6.6
	Between group p value: 0.08 (two

No Concurrent LR-5

37.1% (17.5% - 62.3%)

6.7

	No Concurrent LR-5	
	69.5% (49.1% - 84.4%)	
	3.9	
ed z-test)		

29 studies.

- data.
- 37.1%, p=0.63).
- 69.5%, p=0.08)

Non-Concurrent LR-5 (n=1373) -	
With Concurrent L R-5 (n=5 8 7) -	
N on-C oncurrent LR-5 (n=367)-	
With Concurrent LR-5 (n=264)-	
	0

-This IPD meta-analysis found that concurrent LR-5 was not associated with differences in PPV for HCC in LR-3 (p=0.63) or LR-4 observations (p=0.08).

-Our results support the current LIRADS paradigm, wherein the presence of concurrent LR-5 should not change the categorization of LR-3 and LR-4 observations.

REFERENCES

- ACR, CT/MRI LI-RADS v2018 CORE. 2018.
- *Risk Patients.* Radiology 2018
- Systematic Review. Gastroenterology 2019

Bashir Lab *for* Liver Imaging Research

RESULTS

The final cohort included a total of 2591 observations from 1456 patients (mean age 59 years, 1083 [74%] male), from

Of the studies included, 3 reported CT data only, 19 reported MRI data only, and 7 reported both CT and MRI

For LR-3 observations, the point estimate was not higher in the presence of a concurrent LR-5 vs without (45.4% vs

For LR-4 observations, the point estimate for PPV was not higher in the presence of LR-5 vs. without (88.6% vs.

CONCLUSIONS

van der Pol, C.B., et al., CT/MRI and CEUS LI-RADS Major Features Association with Hepatocellular Carcinoma: Individual Patient Data Meta-Analysis. Radiology, 2022. 302(2): p. 326-335. Chernyak. et al., Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-

van der Pol. et al, Accuracy of the Liver Imaging Reporting and Data System in Computed Tomography and Magnetic Resonance Image Analysis of Hepatocellular Carcinoma or Overall Malignancy—A

Take a picture to download the full protocol + methods