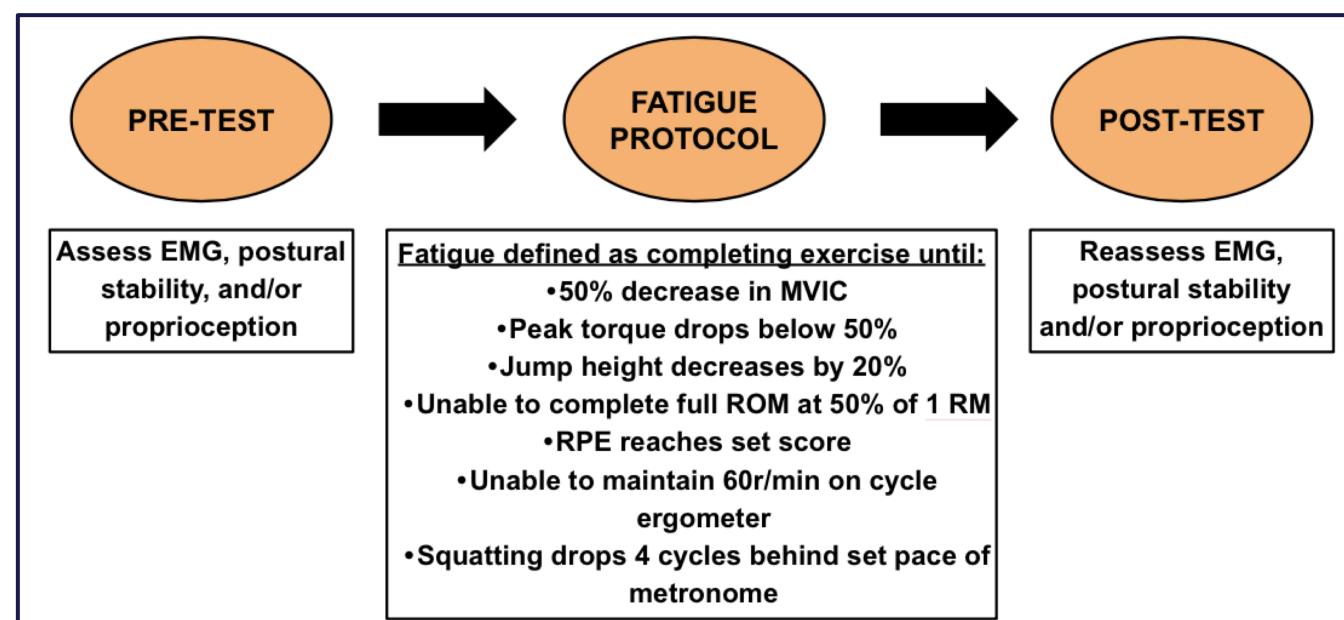
Duke University School of Medicine **Doctor of Physical Therapy**

Background

- 2.5 million athletes report to the emergency room each year with a knee injury, representing one of the most commonly injured joints.¹
- Fatigue can have a significant effect on injury; however, the effect of fatigue on these risk factors is largely unknown (see Figure 2).
- Risk factors for injury during sport can be divided into two separate categories:
- Internal risk factors: physical deficiencies, physical fitness, previous injury, psychological factors, physical build, age & sex.
- External risk factors: type of sport, venue, equipment, weather conditions, and other athletes.²
- In an effort to prevent the fatigue-related knee injuries, we must establish the effect fatigue has on neuromuscular risk factors, including electromyographic activity (EMG) of knee musculature, postural stability, and proprioception (see Figure 3).


Purpose

• To examine the evidence that fatigue affects neuromuscular risk factors for knee injury including electromyographic activity (EMG) of the knee musculature, postural stability, and proprioception.

Methods

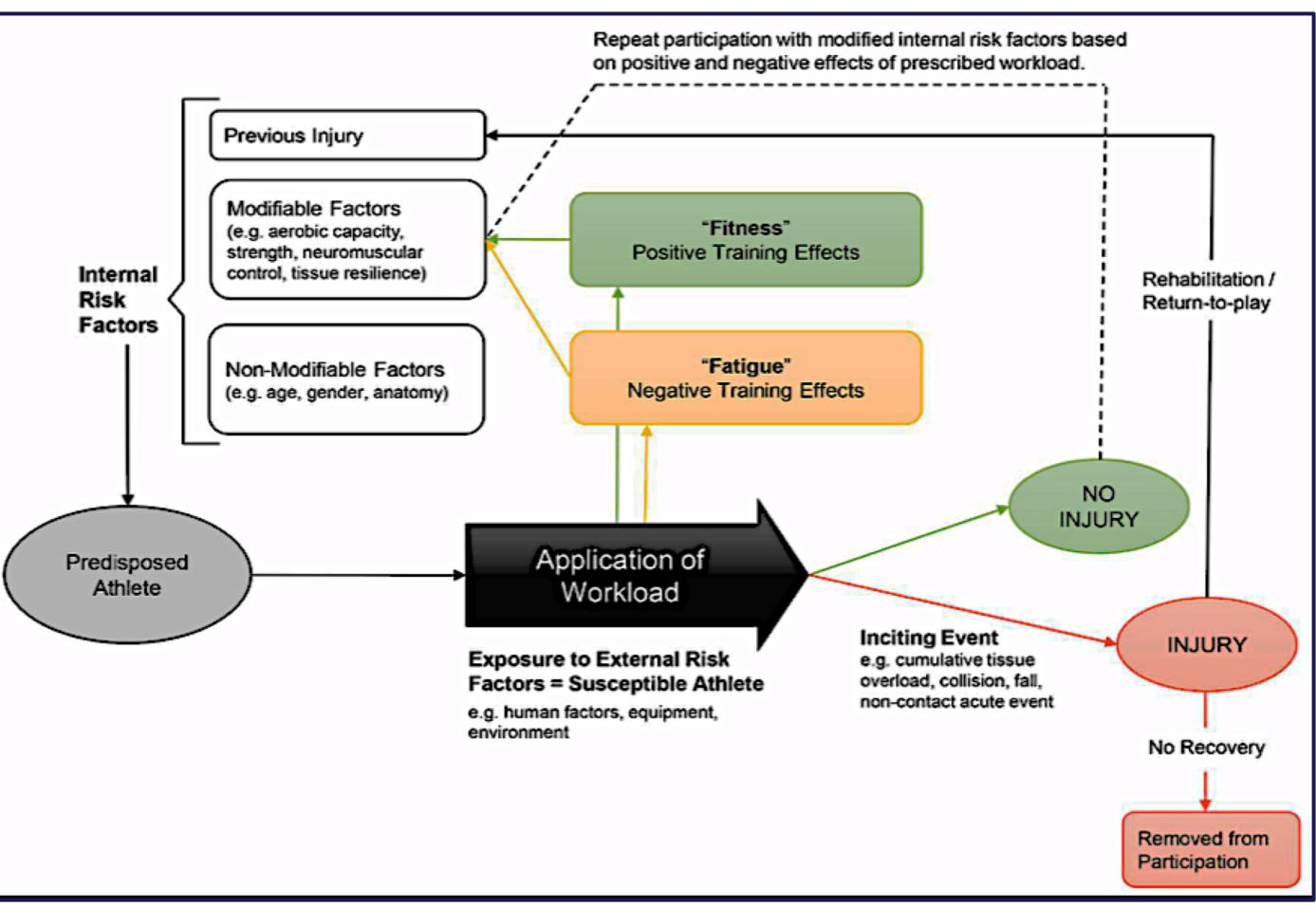

- Systematic review: Pubmed, Embase, and CINAHL
- Highlighted inclusion criteria:
 - (1) Healthy active individuals ages 17-39 years
 - (2) Measurable fatigue as an intervention pre and post fatigue protocol (see Figure 1)
 - (3) Outcomes measured post-fatigue protocol: electromyography, postural stability, and proprioception
- Highlighted exclusion criteria:
 - (1) Previous lower limb reconstruction or any injury occurring in previous six months
 - (2) Outcomes including: joint kinematics, ground reaction forces, joint kinetics, or strength

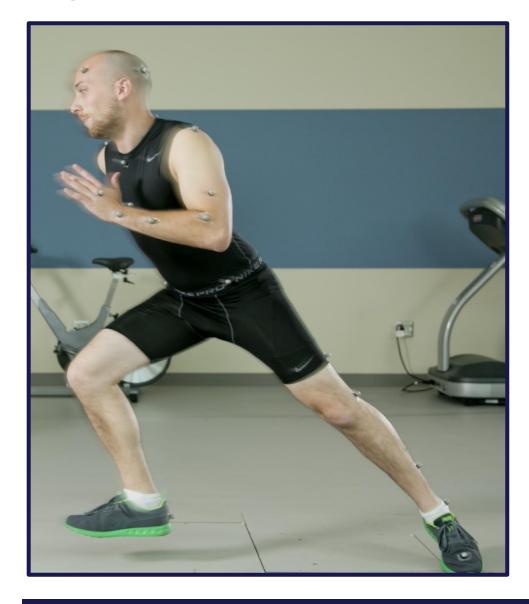
Figure 1: Inclusion Criteria for Fatigue Protocol Assessment

The Effect of Fatigue on Neuromuscular Risk Factors for Knee Injury: A Systematic Review Andrew Batchelder SPT; Kristen Cannon SPT; Kyla Keefe SPT, ATC; Jonathan Kirsch SPT, ATC; Lauren Hubbard SPT, CSCS; Timothy Sell PhD, PT

Figure 2: Workload—Injury Aetiology Model (from Windt and Gabbett, 2016)

Results

Neuromuscular Risk Factor Studied	Outcome Measure	Articles	Signif
Muscle Activation	EMG during Jumping/Landing	Gehring et al. 2009; Kellis, Kouvelioti, 2009; Kim et al. 2015; Padua et al. 2006; Patrek et al. 2011; Smith et al. 2009;	 Delay in g Decrease activation soleus ac quadricep greater ef Activation medial the in knee jo
	EMG during Gait	Ballantyne et al. 2010; Kellis, Liassou, 2009; Kellis et al. 2011	 Decrease increase decrease stance, & activation Increase activation
	EMG during Eccentric Contraction	Longpre et al. 2015	 Increased activation Coactivation
Postural Stability	Static & Dynamic Balance Recovery	Dickin et al. 2008; Johnston et al. 1998; Mademli et al. 2008; Whyte, 2015;	 Balance i directions Decrease test performant
	Center of Foot Pressure	Arora et al. 2016; Bizid et al. 2009; Bruniera et al. 2013; Paillard et al. 2014	 Decrease Increase Decrease unilateral fatigued
	COP excursion velocity	Gribble et al. 2004	Greater C
Proprioception	Threshold to Detect Passive Motion (TTDPM)	Allison et al. 2016; Rozzi et al. 1999; Skinner et al. 1986	 Decrease extension
	Joint Position Sense	Changela et al. 2013; Gear, 2011	 Reproduce joint position
	Absolute Angular Error	Lattanzio et al. 1997; Miura et al. 2004	 Increased fatigue pr


ficant Results Post Fatigue

- gluteus medius activation ed hamstring & anterior tibialis , increased gastrocnemius & ctivation, & increased
- p/hamstring coactivation, w/ ffect in females
- n of lateral thigh muscles prior to igh muscles, leading to increase pint abduction in females
- ed tibialis anterior activity,
- d vastus lateralis activity,
- ed hamstring activity during IC and decreased gluteus maximus
- d vastus medialis & biceps femoris during treadmill running
- d vastus lateralis & rectus femoris n in lunges as compared to squats ation was not altered
- impairments in both AP and ML
- ed balance skill and star balance ormance in both women & men
- ed peak force d mean COP
- ed postural stability when both & bilateral knee extensors were
- COPV in ML direction
- ed detection of joint motion in
- ction error noted in perception of tion
- ed absolute angle error after all orotocols

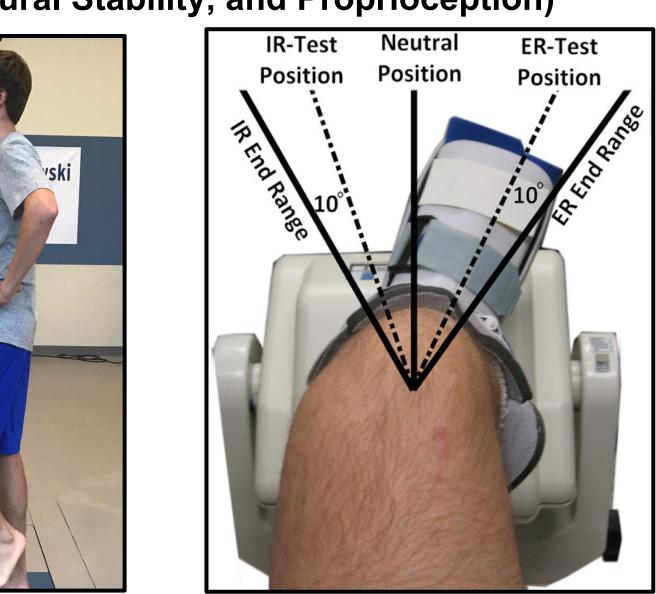
Conclusion

postural stability in the lower extremity, increasing the risk of knee injury in physically active individuals during fatigue related situations.

Figure 3: Variables Examined (EMG, Postural Stability, and Proprioception)

Clinical Relevance

- The examination of risk factors for musculoskeletal injury is an essential step in injury prevention.
- fatigue negatively affects neuromuscular characteristics potentially providing insight for interventions that target fatigue.
- Possible prevention strategies include: Physical training programs that attempt to reduce the effects of fatigue on risk factors for injury
- Nutritional interventions
- Sleep, rest, and other activities designed for recovery



Acknowledgements / References

- 1. Gage, B. E., et al. (2012). "Epidemiology of 6.6 million knee injuries presenting to United States emergency departments from 1999 through 2008." Acad Emerg Med 19(4): 378-385.
- 2. van Mechelen, W., et al. (1992). "Incidence, severity, aetiology and prevention of sports injuries. A review of concepts." Sports Med 14(2): 82-99.
- Med 51(5): 428-435.
- 4. Photos courtesy of Dr. Timothy Sell
- 5. Photo credit: https://amp.businessinsider.com/images/50eacecbecad041114000022-750-562.jpg

Fatigue has a profound impact on EMG activity, proprioception, and

The evidence outlined in this systematic review demonstrates how

Future research is necessary to examine these interventions.

3. Windt, J. and T. J. Gabbett (2017). "How do training and competition workloads relate to injury? The workload-injury aetiology model." Br J Sports